產(chǎn)品分類(lèi)
Products產(chǎn)品中心/ PRODUCTS
簡(jiǎn)要描述:植入式生理信號(hào)無(wú)線遙測(cè)系統(tǒng)用于長(zhǎng)時(shí)間測(cè)量清醒無(wú)束縛的大鼠、小鼠、兔子、比格犬、猴子、魚(yú)等多種動(dòng)物的心率、體溫和活動(dòng)量等生理參數(shù)
聯(lián)系電話:021-54377179
植入式生理信號(hào)無(wú)線遙測(cè)系統(tǒng)用于長(zhǎng)時(shí)間測(cè)量清醒無(wú)束縛的大鼠、小鼠、兔子、比格犬、猴子、魚(yú)等多種動(dòng)物的心率、體溫和活動(dòng)量等生理參數(shù)。使用此系統(tǒng)可以保證動(dòng)物在籠內(nèi)自由活動(dòng),不需要麻醉或束縛,這樣測(cè)量到的生理信號(hào)更能反映自然狀態(tài)下的動(dòng)物生理狀況??捎糜谏锕?jié)律研究和相關(guān)的生命體征監(jiān)測(cè)。
植入式生理信號(hào)無(wú)線遙測(cè)系統(tǒng)可無(wú)線遙測(cè)和記錄實(shí)驗(yàn)動(dòng)物的:心率、體溫、活動(dòng)量.
植入式生理信號(hào)無(wú)線遙測(cè)系統(tǒng)由植入體(E-Mitter)、接收數(shù)據(jù)轉(zhuǎn)換器(Receiver)、電纜和記錄分析計(jì)算機(jī)(VitalView)構(gòu)成。1厘米大小的植入體E-Mitter集成了傳感器、放大器和無(wú)線信號(hào)發(fā)射器,根據(jù)測(cè)量信號(hào)不同有多種規(guī)格。植入式E-Mitter轉(zhuǎn)發(fā)器不需電池,由接收數(shù)據(jù)轉(zhuǎn)換器(Receiver)輸出電力。實(shí)驗(yàn)人員將植入體埋入動(dòng)物皮下,生理信號(hào)被植入體采集到并轉(zhuǎn)換成相應(yīng)的電信號(hào)后用無(wú)線電發(fā)射出來(lái),由飼養(yǎng)籠下方的接收器接收到并傳遞給數(shù)據(jù)轉(zhuǎn)換器,完成數(shù)據(jù)轉(zhuǎn)換后送入處理器進(jìn)行數(shù)據(jù)處理。系統(tǒng)最多可同時(shí)連接32個(gè)接收器,完成大規(guī)模的試驗(yàn)。
植入體(E-Mitter)是植入在動(dòng)物體內(nèi)的微型設(shè)備,它集成了傳感器,放大器,數(shù)字轉(zhuǎn)換,無(wú)線發(fā)射的功能并解決了生物體的抗排異反應(yīng)。植入體有用于測(cè)量生物心率,體溫和活動(dòng)量等多種參數(shù)的規(guī)格。
植入式生理信號(hào)無(wú)線遙測(cè)系統(tǒng)的主要特點(diǎn):
? 無(wú)線遙測(cè)
? 植入式E-Mitter轉(zhuǎn)發(fā)器沒(méi)有電池
? 長(zhǎng)期監(jiān)測(cè)-植入裝置后允許連續(xù)、遙測(cè)實(shí)驗(yàn)動(dòng)物一生
? 準(zhǔn)確、可靠,報(bào)告清醒無(wú)束縛動(dòng)物的生理和行為數(shù)據(jù)
E-Mitter(植入體系統(tǒng))主要技術(shù)參數(shù):
E-Mitter temperature range溫度范圍 | 33° C - 41° C |
E-Mitter accuracy精度 | ± 0.1° C |
G2 E-Mitter size / weight大小/重量 | 15.5 mm x 6.5 mm 毫米/ 1.1 gm克 |
G2 HR E-mitter size / weight大小/重量 | 19.5 mm x 3.5mm毫米/ 1.5 gm克 |
TA E-Mitter size / weight大小/重量 | 23 mm x 8 mm毫米/ 1.6 gm克 |
HR E-Mitter size / weight 大小/重量 | 26 mm x 8 mm毫米/ 2.2 gm克 |
HR measuring range心率測(cè)量范圍 | 120 - 780 BPM |
Activity活動(dòng)量 | Gross motor activity only粗大活動(dòng) |
ER4000 信號(hào)接收器
ER4000信號(hào)接收器,用于給E-Mitters充電和接收E-Mitters傳回來(lái)的測(cè)量數(shù)據(jù)。適合標(biāo)準(zhǔn)的大小鼠飼養(yǎng)籠具。
信號(hào)接收器的主要參數(shù)
ER-4000Energizer/Receiver尺寸 | 56 cm x 29 cm x 7 cm |
通訊形式 | RS 232 串行 |
激發(fā)接收器數(shù)量 | 32 |
單個(gè)電源支持激發(fā)接收器數(shù)量 | 4 |
激發(fā)接收器需要空間 | 30 cm (水平); 20 cm (垂直) |
E-Mitter 傳輸范圍 | 12 cm above ER-4000 |
激發(fā)接收器和感應(yīng)器通過(guò)VitalView軟件連接到電腦。最多可以記錄240個(gè)數(shù)據(jù)通道,典型應(yīng)用120個(gè)測(cè)試對(duì)象,對(duì)于E-mitter系統(tǒng)最多32個(gè)測(cè)試對(duì)象。
VitalView軟件可以設(shè)置實(shí)驗(yàn)參數(shù)和采集數(shù)據(jù)。軟件管理與硬件的連接,并且儲(chǔ)存顯示基本的圖形化的數(shù)據(jù)分析。軟件也提供統(tǒng)計(jì)形式的數(shù)據(jù)顯示,可以輸出數(shù)據(jù)。
Telemetry - used to monitor temperature, gross motor activity and heart rate data.
Physiological and behavioral monitoring oftransgenic mice and other laboratory animals has never been simpler. Through the use of biotelemetry and a variety of available sensors, it is possible for VitalView to monitor up to seven different physiological or behavioral parameters from a single laboratory subject
Combinations of the following parameters may be monitored for multiple laboratory subjects using VitalView:
Body Core Temperature
Heart Rate
Gross Motor Activity
Running Wheel Turns
Drinking/Licking Frequency
Feeding Behavior
Ambient Temperature
Ambient Light
E-Mitter Battery-Free Implantable Transponders:
Using telemetry to provide temperature, gross motor activity and heart rate data. An E-Mitter is a small implantable transponder that is powered by capturing energy from electrical fields generated by the ER-4000 Energizer/Receiver. This allows the E-Mitter to operate without batteries and remain implanted indefinitely to monitor the subject''s temperature, activity or heart rate. As a result, high costs and downtime of explantation, refurbishment and reimplantation are avoided.
如只需要測(cè)量大鼠、小鼠的核心體溫,可以選擇植入式體溫膠囊,對(duì)體溫?cái)?shù)據(jù)進(jìn)行遙測(cè):
參考文獻(xiàn):
1.Ganeshan, Kirthana et al. “Energetic Trade-Offs and Hypometabolic States Promote Disease Tolerance." Cell vol. 177,2 (2019): 399-413.e12. doi:10.1016/j.cell.2019.01.050
2.Li, Yongguo et al. “Secretin-Activated Brown Fat Mediates Prandial Thermogenesis to Induce Satiation." Cell vol. 175,6 (2018): 1561-1574.e12. doi:10.1016/j.cell.2018.10.016
3.Dodd, Garron T et al. “Leptin and insulin act on POMC neurons to promote the browning of white fat." Cell vol. 160,1-2 (2015): 88-104. doi:10.1016/j.cell.2014.12.022
4.Pi?ol, Ramón A et al. “Brs3 neurons in the mouse dorsomedial hypothalamus regulate body temperature, energy expenditure, and heart rate, but not food intake." Nature neuroscience vol. 21,11 (2018): 1530-1540. doi:10.1038/s41593-018-0249-3
5.Li, Jin et al. “Neurotensin is an anti-thermogenic peptide produced by lymphatic endothelial cells." Cell metabolism vol. 33,7 (2021): 1449-1465.e6. doi:10.1016/j.cmet.2021.04.019
6.Pi?ol, Ramón A et al. “Preoptic BRS3 neurons increase body temperature and heart rate via multiple pathways." Cell metabolism vol. 33,7 (2021): 1389-1403.e6. doi:10.1016/j.cmet.2021.05.001
7.Krisko, Tibor I et al. “Dissociation of Adaptive Thermogenesis from Glucose Homeostasis in Microbiome-Deficient Mice." Cell metabolism vol. 31,3 (2020): 592-604.e9. doi:10.1016/j.cmet.2020.01.012
8.Sustarsic, Elahu G et al. “Cardiolipin Synthesis in Brown and Beige Fat Mitochondria Is Essential for Systemic Energy Homeostasis." Cell metabolism vol. 28,1 (2018): 159-174.e11. doi:10.1016/j.cmet.2018.05.003
9.Heine, Markus et al. “Lipolysis Triggers a Systemic Insulin Response Essential for Efficient Energy Replenishment of Activated Brown Adipose Tissue in Mice." Cell metabolism vol. 28,4 (2018): 644-655.e4. doi:10.1016/j.cmet.2018.06.020
10.Dodd, Garron T et al. “A Hypothalamic Phosphatase Switch Coordinates Energy Expenditure with Feeding." Cell metabolism vol. 26,2 (2017): 375-393.e7. doi:10.1016/j.cmet.2017.07.013
11.Keipert, Susanne et al. “Long-Term Cold Adaptation Does Not Require FGF21 or UCP1." Cell metabolism vol. 26,2 (2017): 437-446.e5. doi:10.1016/j.cmet.2017.07.016
12.Wang, Tongfei A et al. “Thermoregulation via Temperature-Dependent PGD2 Production in Mouse Preoptic Area." Neuron vol. 103,2 (2019): 309-322.e7. doi:10.1016/j.neuron.2019.04.035
13.Chavan, Rohit et al. “Liver-derived ketone bodies are necessary for food anticipation." Nature communications vol. 7 10580. 3 Feb. 2016, doi:10.1038/ncomms10580
14.Jiang, Lin et al. “Leptin receptor-expressing neuron Sh2b1 supports sympathetic nervous system and protects against obesity and metabolic disease." Nature communications vol. 11,1 1517. 23 Mar. 2020, doi:10.1038/s41467-020-15328-3
15.Walker, William H 2nd et al. “Acute exposure to low-level light at night is sufficient to induce neurological changes and depressive-like behavior." Molecular psychiatry vol. 25,5 (2020): 1080-1093. doi:10.1038/s41380-019-0430-4
16.Zhang, Xue-Ying et al. “Huddling remodels gut microbiota to reduce energy requirements in a small mammal species during cold exposure." Microbiome vol. 6,1 103. 8 Jun. 2018, doi:10.1186/s40168-018-0473-9
17.Ingiosi, Ashley M et al. “A Role for Astroglial Calcium in Mammalian Sleep and Sleep Regulation." Current biology : CB vol. 30,22 (2020): 4373-4383.e7. doi:10.1016/j.cub.2020.08.052
18.Padilla, Stephanie L et al. “Kisspeptin Neurons in the Arcuate Nucleus of the Hypothalamus Orchestrate Circadian Rhythms and Metabolism." Current biology : CB vol. 29,4 (2019): 592-604.e4. doi:10.1016/j.cub.2019.01.022
:,
:
yuyanbio
:yuyanbio